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Abstract
We construct an algebra with twisted commutation relations and equip it with
the shift. For appropriate irregularity of the non-local commutation relations,
we prove that the tracial state is the only translation-invariant state.

PACS numbers: 02.30.Tb, 03.65.Fd, 02.50.Ey

1. Introduction

Whereas the dynamics of quantum systems with finitely many degrees of freedom is fully
controllable via the spectrum of the unitary operator that implements it, this is no longer
true with infinitely many degrees of freedom. While these systems can always be described
by operators acting on suitable Hilbert spaces, it may however happen, typically in the
thermodynamic limit and in the presence of interactions, that not all of these operators represent
observable quantities.

In such cases, one prefers to focus upon equilibrium (time-invariant) states characterized
by a few parameters as temperature and chemical potential. There thus arises the question
whether such states cover essentially all of the system time-invariant states or, if there are other
time-invariant states, whether and why these latter should not be as physically important.

Consider, for instance, the case of a quasi-free time evolution of non-interacting particles
determined by a single-particle Hamiltonian h; the time evolution of the infinite system is an
automorphism αh. If k is any other single-particle Hamiltonian commuting with h ([h, k] = 0),
then the automorphisms αh and αk share the same time-invariant states ω = ω ◦ αh = ω ◦ αk ,
which therefore need infinitely many parameters to be characterized.

There is, however, the conviction that interactions reduce the possible equilibrium
states via a mechanism that should be rather general in its yet unknown relevant features.
Unfortunately, there is so far scarcely any control on the asymptotic properties of the dynamics
of realistic physical systems. Some clues are the following ones: space translations teach us
that a too strong asymptotic (with respect to repeated applications αn

h of the automorphism)
independence, or asymptotic commutativity (Abelianess), cannot be the essential feature. For
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instance, in the case of translation-invariant time evolutions, norm asymptotic Abelianess,
namely

lim
n→∞

∥∥[A, αn
h(B)

]∥∥ = 0 ∀A,B ∈ A,

would yield a trivial theory. On the other hand, Galilei-invariant time evolutions which posses
infinitely many equilibrium states are essentially weakly asymptotically Abelian with respect
to a given equilibrium state ω [1], that is

lim
n→∞ ω

(
C†[A, αn

h(B)
]
D
) = 0 ∀A,B,C,D ∈ A.

It is thus of interest to examine toy models for which the dynamics can be proved to be weakly
asymptotically Abelian and which, none the less, have a relatively small set of invariant states.

A particular instance of the equilibrium state is the so-called tracial, or totally mixed, state
ω on a (C*) algebra A, whose two-point correlation functions are such that ω(AB) = ω(BA)

for all A,B ∈ A. There have already been constructed non-commutative systems where the
tracial state is the only invariant state for certain automorphisms; examples are the Price–
Powers shifts [2–5] and the irrational rotation algebras [5, 6]. In both cases, what forbids the
existence of invariant states different from the tracial one is that operators in the course of
time anti-commute infinitely often and sufficiently irregularly with one another. Such a lack
of asymptotic commutativity is indeed expected in real interacting quantum systems.

In the following, we give another example of such quantum dynamical systems inspired
very much by the Price–Powers shifts. However, the way how asymptotic commutativity is
violated is less restrictive. For the Price–Powers shift, the algebraA is created from self-adjoint
operators ek = e∗

k , e2
k = 11, k ∈ N, that commute or anticommute,

ekep = (−1)g(|p−k|)epek,

as prescribed by a so-called bitstream, namely a two-valued function on the integers,
g : N �→ {0, 1}, g(0) = 0.

We shall instead consider Weyl operators in place of the ek and organize them in such a
way that shifted Weyl operators remain in Weyl-like relation with one another in a so-called
complementary manner [7] so that any two of them create a full matrix algebra Md×d . We shall
show that, under the hypothesis of sufficiently irregular complementary Weyl-like relations,
the tracial state is the only translationally invariant state as for the Powers–Price shifts.

The paper is organized as follows. In section 2, we define the algebra and the
complementary relations, together with some representations either as an AF-algebra (in some
cases a UHF algebra) or as a quantum-spin chain by means of generalized Jordan–Wigner
transformations. In section 3, we show that under the assumption of sufficiently random
commutation relations only the tracial state can be translation invariant.

2. The algebra and its automorphism

We start with infinitely many finite-dimensional algebras Am, m ∈ N, all isomorphic to d × d

matrix algebras, created by the operators W
(m)

	k , 	k ∈ Z
2
d := {(k1, k2), ki = 0, 1, . . . , d − 1},

that satisfy the commutation relations of a discrete Weyl group

W
(m)

	k1
W

(m)

	k2
= e

2π iσ(	k1 ,	k2)

d W
(m)

	k2
W

(m)

	k1
, (1)

with a symplectic form σ(	k1, 	k2) := k11k22 − k12k21.
Note that W

(m)

	0 = 11 and W
(m)

−	k = (
W

(m)

	k
)−1

.

2
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The relations between Weyl operators with different upper indices are twisted by means
of a sequence of 2 × 2 matrices An, n ∈ Z, with entries in {0, 1, . . . , d − 1}; explicitly,

W
(p)

	kp

W
(q)

	kq

= e2π iu	kp 	kq (q−p)
W

(q)

	kq

W
(p)

	kp

, (2)

u	kp
	kq

(q − p) := 1

d
σ(	kp,Aq−p

	kq). (3)

Setting A0 = 11, the single-site relations (1) are a particular instance of (2).
The finite products define elements of an infinite discrete group. We denote them as

WI := W
(1)

	k1
W

(2)

	k2
· · · W(�)

	k�

, (4)

where I denotes a sequence of vectors {	km}m∈Z with only finitely many components,
(	k1, 	k2, . . . , 	k�), possibly different from the vector 	0. We define a star operation as(
W

(m)

	k
)∗ = (

W
(m)

	k
)−1

and (UV )∗ = V ∗U ∗ as usual. So the Weyl operators and their products
are unitary elements of the C∗ algebra generated by the finite products WI, which are assumed
to be linearly independent. We shall denote this algebra by A.

We shall further equip A with an automorphism α : A �→ A such that αn
(
W

(0)

	k
) = W

(n)

	k .
Then, generic algebraic relations read

WIα
n(WJ ) =

(
nI∏

a=1

W
(a)

	ka

)(
nJ∏

b=1

W
(b+n)

	kb

)
= e2π iun(I ;J )αn(WJ )WI , (5)

un(I ; J ) := 1

d

nI∑
a=1

nJ∑
b=1

σ(	ka, Ab+n−a
	kb) =

nI∑
a=1

nJ∑
b=1

u	ka
	kb

(b + n − a). (6)

Remarks 1

(1) Every sequence of 2 × 2 matrices {An}n∈N generates its own algebra A; however, for
special sequences {An}n∈N (as will be shown in the following section), the corresponding
algebras built by W

(m)

	k ,m = 1, . . . , l will, for all l, be isomorphic to the tensor product
over l local sites, and therefore the total algebra can be considered as the same A equipped
with the usual shift and a different automorphism α with finite speed.

(2) We will refer to the Weyl operators W
(m)

	k in (1) as to the letters of the algebra A and to
the products WI as in (4) as to the words of A. The norm of every word equals 1 and
(WI )

d = 11, as the eigenvalues of all WI are the pure phases e
2π i�

d , 0 � � � d − 1. Linear
combinations of words will be referred to as sentences, as in the case of the Price-Powers-
shift. A state ω : A �→ C over the algebra amounts to a positive, normalized functional
over A: it is thus fixed by giving its values on all words.

We proceed in studying the algebras, showing the existence of a non-trivial representation.
This is not a trivial problem, see [8]. Consider the set I of multi-indices I and define the
composition law of addition: I × I �→ I: if I = {	kI

m

}
m∈Z

and J = {	kJ
m

}
m∈Z

, then

(I, J ) �→ I + J = {	kI
m + 	kJ

m

}
m∈Z

,

where the sum of vectors 	kI
m + 	kJ

m is understood modulo d. Then, the family of operators
{W̃I }I∈I satisfying the multiplication law W̃I W̃J = W̃I+J forms an Abelian group G on
which the shift defines an automorphism with an associated shift-invariant measure δ such that
δ(W̃I ) = 0 unless I = I0 := {	0}m∈Z. Therefore, one can consider the Hilbert space �2(G)

3
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spanned by the orthonormal elements W̃I and represent the Weyl operators WI introduced
before by

�(WI )W̃J = eiπu0(I,J )︸ ︷︷ ︸
ω(I ;J )

W̃I+J . (7)

ω(I ; J ) is a co-cycle, namely

ω(I1, I2 + I3)ω(I2, I3) = ω(I1 + I2, I3)ω(I1, I3).

In this way, A is represented as a sub-algebra �(A) ⊆ B(�2(G)) (it is known as the regular
representation) of the bounded operators on �2(G) and thus all considerations in [9] are
therefore applicable to A. For instance, A has a trivial center if to any word WI there exists
another word WJ such that WI and WJ do not commute. In this case the trace on the algebra

tr(WI ) = 0 ∀I �= ∅, tr(11) = 1 (8)

is unique, and it is implemented in the regular representation by

tr(WI ) = 〈
W̃I0

∣∣�(WI )
∣∣W̃I0

〉
.

Evidently, the trace is invariant under the shift automorphism α : A �→ A
Like in [9], the main interest is in finding conditions on the co-cycle (7) such that no

other invariant states exist other than the tracial state. In [9] the main tool was the high degree
of anticommutativity, a generalization of the fact, that translation invariant states over Fermi
systems have to be even. Though this criterion is sufficient only if d = 2, non-commutativity
as embodied in (2) will nevertheless turn out to be just as powerful in restricting the class of
invariant states. We will indeed give other arguments to enlarge the class of automorphisms
that allow only the tracial state as an invariant state. Though not optimal, the result indicates
that dynamical delocalization as described in the following section is an effect which is worth
studying in more detail and in more realistic thermodynamic systems.

2.1. Spin-chain representation

We have already given a representation of the algebra over B(l2(G)). However, in order to
bring it in closer contact with physical models, we seek connections with spin chains and their
automorphisms.

This demands different representations. To demonstrate the differences we make a short
detour, considering finite algebras defined on a finite ring of N lattice points (= upper indices)
with a cyclic shift, instead of an infinite set of points with a non-recurrent shift. We get
different dimensions of the Hilbert spaces. In the above-mentioned representation there are
(d2)N basis vectors. For a spin chain one would expect only dN as necessary. But this, as will
turn out, is possible for a restricted set of defining sequences only. In section 2.2, we give
then a representation with a double-spin chain, possible for any defining sequence, employing
again (d2)N basis vectors for the finite algebra on a ring.

More precisely, we shall try to represent the Weyl operators W
(m)

	k , m = 0, . . . , N , as

elements of the full matrix algebra
⊗N

n=0(Md×d)n. We proceed step by step: let us define the
Weyl operator at site 0 � j � N to be

W
(j)

	k = WA0,j
	k ⊗ WA1,j

	k ⊗ WAj,j
	k ⊗ 11j+1 . . . ⊗ 11N. (9)

The unknowns in the construction are the 2 × 2 matrices with integer entries from
{0, 1, . . . , d − 1} that we have to adjust in order to fulfill the commutation relations (2).
Therefore, from (1), one gets the condition

j∑
�=0

σ(A�,j
	k,A�,j 	m) = σ(	k, 	m), (10)

4
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for all 	k, 	m and 0 � j � N which is equivalent to
∑j

�=0 Det(A�,n) = 1. If d is prime, then all
Weyl operators are unitarily isomorphic so that the algebra created by them is Md×d ; therefore,
in the rest of this section, d will be assumed to be a prime number.

We have to control whether this ansatz can really be satisfied and how far the matrices
A�,k are determined by the matrices An in (3). It turns out that A0,j = Aj while A00 = 11.
The other matrices A�,k have to be calculated recursively from (2) and (3). More precisely to
evaluate

σ(A0,1	k,A0,2	l) + σ(A1,1	k,A1,2	l) = σ(	k,A0,1	l), (11)

we define the linear map A �→ Â,

A =
(

a11 a12

a21 a22

)
→ Â :=

(
a22 −a12

a21 a11

)
.

With this map, it follows that A1,2 = Â−1
1,1(A0,1 − Â0,1A0,2). This fixes A1,2 if we take into

account that the freedom in A1,1 is reduced to an isomorphism inside of the local algebra.
However, we can only be sure that there exists a solution A1,2 if A1,1 is invertible which surely
holds if Det(A1,1) �= 0. Similarly

An−k,n = Â−1
n−k,n−k

(
A0,n−k −

n−k−1∑
l=0

Âl,n−kAl,n

)
.

The equations are uniquely solvable (up to trivial local isomorphisms) under the constraint

Det(A0,j ) + · · · + Det(Aj−1,j ) �= 1 ∀j. (12)

This implies in addition that Det(Aj,j ) �= 0; as a consequence the algebra generated by the
Weyl operators (9) is isomorphic to the full matrix algebra.

Only the sequence of matrices An is at our disposal, whereas the matrices A�,k are
linearly depending on them; however, there remains enough freedom to find sequences that
meet condition (12). A special example corresponds to choosing A0,j = δ1,j 11; this in turn
corresponds to the usual shift on the lattice algebra. More generically, one may choose A0,j

to belong to a left ideal with determinant 0 for all j �= 0; it then follows that, for all k > 0,
An−k,n also belongs to this ideal and therefore Det(An,n) = 1 ∀n.

As a consequence, provided Det(An,n) �= 0 ∀n, we can consider the algebra to be
the same algebra i.e. the spin chain M⊗∞

d×d , but equipped with different automorphisms
corresponding to the different sequences A0,n. Note that in the spin-chain representation,
the algebra is fairly simple, while the automorphism (which we will again denote by α and
which corresponds to the shift in the regular representation) is complicated.

Some discussions on the spin chain representations and their importance for physics
follows in the conclusion.

2.2. The generalized Jordan–Wigner transformation

We have already mentioned the representation of every algebra A as a C∗ algebra �(A) ⊆
B(�2(G)). We can give another representation that can be considered as a generalization of
the Jordan–Wigner transformations that relates the spin lattice to the fermions on a lattice.
We represent A as a subalgebra of the doubled-spin chain

⊗∞
m=−∞(Md×d ⊗ Md×d)m =⊗∞

n=−∞(Md×d)n, where W
(0)

	k with 	k = (k1, k2) is identified with the infinite tensor product(
+∞⊗
n=1

(
W0,bn

)
−2n

⊗ (
W0,an

)
−2n+1

)
⊗ (

Wk1,0
)

0 ⊗ (
Wk2,k1

)
1

+∞⊗
n=2

(11)n, (13)

5



J. Phys. A: Math. Theor. 43 (2010) 115301 B Baumgartner et al

where the Weyl operator Wk1,0 is at site n = 0, while Wk2,k1 is at site n = 1, whereas the
operators W0,bn

are located at sites −2n and W0,an
at sites −2n + 1. Moreover, the components

an and bn are determined by 	k and the commutation relations via

An

(
k1

k2

)
=

(
bn

an

)
.

Furthermore, the action of the shift automorphism α is now represented as a two-step translation
along the lattice.

Note that since the contributions from the infinite tails commute with each other by
construction, finite tensor products of the form W

(0)
k1,k2

· · · W(N)
l1,l2

may be effectively represented

as elements of the matrix algebra
⊗2N

n=0(Md×d)n. It thus follows that the commutant consists
of operators of the form

−∞⊗
n=2j−1

(11)n ⊗ (
W�1,�2

)
2j

⊗ (
W�2,0

)
2j+1 ⊗

⎛⎝⊗
k=j+1

(
W0,bk−j (�)

)
2k

⊗ (
W0,ak−j (�)

)
2k+1

⎞⎠ ,

plus operators belonging to the center (the center becomes trivial if (12) holds; however, this
condition is not needed here.)

We can consider the operators to act on the vector |	 >= ⊗−∞<k<∞|0 > where at each
lattice point W0,k|0 >= |0 > . Representing W̃ 0

k1,k2
by(

+∞⊗
n=1

11 ⊗ 11

)
⊗ (

Wk1,0
)

0 ⊗ (
Wk2,0

)
1

+∞⊗
n=2

(11)n

and letting it acting on |	 >= ∣∣W̃I0

〉
, we reproduce l2(G) and therefore the regular

representation.

Example 1. As a concrete illustration of the algebraic construction of above, let us consider
the Price–Powers shift. As mentioned in the introduction, this corresponds to the shift on the
C∗ algebra generated by products of self-adjoint operators ej, j ∈ Z such that

ekep = (−1)g(|p−k|)epek.

The algebraic relations can be implemented by means of the Pauli matrices as follows:

ek =
+∞⊗
n=1

(
σ

g(k)

3

)
k−n

⊗ (σ1)k

+∞⊗
n=k+1

(11)n,

where σ3 = (1 0
0 −1

)
, σ1 = (0 1

1 0

)
and σ2 = (0 −i

i 0

)
.

Instead, within the Weyl framework, one has d = 2 and a generating sequence of matrices
which are either An = (1 0

0 1

)
corresponding to g(n) = 0 or An = (0 1

−1 0

)
corresponding to

g(n) = 1. Then, setting e0 = W
(0)
1,0 , one observes that operators at odd places have the form

W0,k and therefore all commute. Consequently, they can be removed from the tensor product
(13), so that, finally one can represent

ek =
+∞⊗
n=1

(
W0,bn

)
k−n

⊗ (
W1,0

)
k

+∞⊗
n=k+1

(11)n.

This corresponds to choosing W0,0 = 1, W0,1 = σ3, W1,0 = σ1, W1,1 = −iσ2.

6
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2.3. Preliminary remarks on invariant states

We now turn to the problem of finding the invariant states under the two-step shift. If we are
only interested in the local effects of such automorphism, we can take the periodic shift in⊗2N

n=0(Md×d), which is unitarily implemented.
The algebra created by finitely many Weyl operators is imbedded in

⊗2N
n=0(Md×d), so that

we can conclude that the automorphism α : A �→ A is unitarily implemented. Therefore, we
can construct states on the local algebra defined by density operators that commute with the
unitary that implements the periodic shift. However, in general, these density operators will
not have a limit when N → ∞.

Another possibility of constructing α-invariant states is to start from vectors in the infinite
tensor product

⊗∞
n=−∞ |ψn〉 that are invariant under the shift. The simple choice where all

|ψn〉 are identical to an eigenvector |φ〉 of W(0,1) gives, independently of the sequence {An}n∈N,
already the tracial state; indeed, since for every WI at some position 〈φ|Wk,l|φ〉 = 0. Therefore,
the representation is isomorphic to the regular representation.

If we choose some other vector and assume that An �= 11 for infinitely many n, again we
obtain the tracial state; in fact, either |〈ψ |W0,bn

|ψ〉〈ψ |W0,an
|ψ〉| < 1, infinitely often so that

+∞∏
n=−∞

|〈ψ |W0,bn
|ψ〉〈ψ |W0,an

|ψ〉| = 0.

If for some N > 0 An = 0 for all n > N , we can choose a vector φ over
⊗2N

n=1 M
(n)
d×d

that is appropriately entangled over the lattice points to guarantee that 〈φ|Wk1,0)|φ〉 �= 0. By
averaging this vector over the period N, one gets an expectation value still �= 0. However,
in general, one expects that it decreases with N. Therefore, if for every N we can find
n > N such that An �= 0 in order to obtain another invariant state in the limit N → ∞, it is
necessary to have correlations between infinitely many lattice points; this can hardly be satisfied
because of monogamy of entanglement. Though we are unable to exclude that other invariant
states might be constructed, our considerations already indicate that the tracial state will turn
out to be the only invariant state under appropriate conditions on the defining sequence of
matrices An.

3. Invariant states

Given (A, α), let ω be an invariant state such that ω ◦ α = ω and consider the corresponding
GNS representation πω of A as a C∗ algebra of bounded operators on the GNS Hilbert space
Hω with a cyclic vector |	〉. Namely, ω(A) = 〈	|πω(A)|	〉; further, the shift automorphism
α is implemented by a unitary Uω such that Uω|	〉 = |	〉. The following simple lemmas
hold.

Lemma 1. Let P ω
0 denote the projection onto the Uω-invariant subspace of Hω. If

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = 0 (14)

is true for all WI, then ω is tracial that is ω(XY) = ω(YX) for all X, Y ∈ A.

Proof. Since P ω
0 � |	〉〈	|, the assumption implies

|ω(WI )|2 = 〈	|πω(W ∗
I )|	〉〈	|πω(WI )|	〉 � 〈	|πω(W ∗

I )P ω
0 πω(WI )|	〉 = 0,

whence, by Cauchy–Schwartz, ω(WIWJ ) �= 0 only if WIWJ = 11. Thus, ω(WIWJ ) =
ω(WJ WI ) for all WI,J , whence ω(XY) = ω(YX) for A is generated by linear combinations
of WIs. �

7
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Lemma 2. If ω is α-invariant, then, setting un(I ) := un(I ; I ) in (6),

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = lim
N→∞

1

N

N−1∑
n=0

e2π iun(I )〈	|πω(WI )U
−n
ω πω(W ∗

I )|	〉. (15)

Proof. The mean ergodic theorem of von Neumann ([10]) and (6) imply

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = lim
N→∞

1

N

N−1∑
n=0

ω(W ∗
I αn(WI ))

= lim
N→∞

1

N

N−1∑
n=0

e2π iun(I )ω(WIα
−n(W ∗

I )).

�

Remarks 2

(1) If WI = 11, then 〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = 1, un(I ) = 0 for all n ∈ N and (15) is
trivially satisfied.

(2) Using the spectral decomposition Uω = ∫
Sp(Uω)

dP λ
ω e2π iλ, (15) reads

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = lim
N→∞

∫
Sp(Uω)

dμI (λ)
1

N

N−1∑
n=0

e2π i(un(I )−nλ), (16)

where dμI (λ) := d(〈	|πω(WI )P
λ
ωπω(W ∗

I )|	〉.
We now concentrate on the sequences u(I) := {un(I )}n∈N and uλ

n(I ) := {un(I )−λn}n∈N

and study their spectrum [10]. In order to properly introduce this notion, consider a sequence
v = {vn}n∈N taking its values vn ∈ C in a compact subset of the complex numbers. For all
k ∈ N, the partial sums

SN(k) := 1

N

N−1∑
n=0

v∗
nvn+k (17)

are bounded; thus, the sequence S(k) := {SN(k)}N∈N has accumulation points and, by a
Cantor-like diagonalization argument (for details see the appendix), there exists at least one
subsequence {Nj }j∈N such that the limit

sk(v) := lim
j→∞

1

Nj

Nj −1∑
n=0

v∗
nvn+k

exists for all k ∈ N. By setting s−k := s∗
k , one obtains a positive-definite sequence (details are

again in the appendix), that is a sequence s(v) = {sk(v)}k∈Z such that∑
i,j

z∗
i si−j (v)zj � 0

for all sequences {zi}i∈Z such that
∑

i∈Z
|zi |2 < ∞. Then, by Bochner’s theorem

sk(v) =
∫ 1

0
dμv(x) e2π ikx,

where dμv(x) is a positive (correlation) measure on [0, 1) such that∫ 1

0
dμv(x) = lim

j→∞
1

Nj

Nj −1∑
n=0

|vn|2.

8
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If the correlation measure of a sequence v is the Lebesgue measure, then sk(v) = 0 whenever
k �= 0, and the sequence v is said to be uniformly distributed. Therefore, it makes sense to
introduce the

Definition 1 (Spectrum of a sequence). [10, 11] Given a sequence v := {vn}n∈N with values
in a compact subspace of C, its Fourier–Bohr spectrum is given by

Sp(v) :=
{

λ ∈ [0, 1) : lim sup
N→∞

1

N

∣∣∣∣∣
N−1∑
n=0

vn e−2π inλ

∣∣∣∣∣ �= 0

}
. (18)

In other words, the spectrum of a sequence v is the subset of values λ ∈ [0, 2π) such
that the sequences v(λ) = {vn exp(−2π inλ)}n∈N are not uniformly distributed. Equivalently,
λ /∈ Sp(v) if and only if

lim
j→∞

1

Nj

Nj −1∑
n=0

vn e−2π iλn = 0 (19)

for all converging subsequences of partial sums.
By means of the spectral properties of sequences, we can derive sufficient conditions that

force the invariant state ω to be tracial.

Lemma 3. Let v(I ) := {e2π iun(I )}n�0; then, the dynamical system (A, α) has the tracial state
as its only invariant state if for each I, Sp(v(I )) is either ∅ or {0} with

lim
N→∞

1

N

N−1∑
n=0

vn(I ) =
d−1∑
j=0

pj (I ) e
2π i
d

j (=: ν(v(I ))) (∗)

for some pj (I ) � 0, j ∈ D, p0 �= 1,
∑d−1

j=0 pj (I ) = 1.

Proof. If Sp(v(I )) = ∅, then, using (19) together with the dominated convergence theorem,
the right-hand side of (16) vanishes and the result follows from lemmas 2 and 1.

If for some I Sp(v(I )) = {0} and relation (*) holds for such I, then, (19) and dominated
convergence applied to (16) together with lemma 2 yield

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 = ν(v(I ))〈	|πω(WI )P
ω
0 πω(W ∗

I )|	〉. (20)

Since |ν(v(I ))| < 1, by exchanging WI and W ∗
I , one gets

〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉 < 〈	|πω(WI )P
ω
0 πω(W ∗

I )|	〉 < 〈	|πω(W ∗
I )P ω

0 πω(WI )|	〉.
Thus, 〈	|πω(W ∗

I )P ω
0 πω(WI )|	〉 = 0, and the result follows from lemma 1. �

For some given I, for instance a singleton I = {1}, there surely exist sequences of matrices
{An}n∈N, with entries from {0, 1, . . . , d − 1}, such that Sp(v(I )) = ∅, or Sp(v(I )) = {0}.

However, in order to use the previous lemma, we have to make sure that there exist
sequences {An}n∈N such that conditions (1) or (2) in the previous lemma are fulfilled for all I.

In the following, we shall consider the four entries aij (n) of the matrices An as random
processes with values from {0, 1, . . . , d − 1}. Then, we shall focus upon the space X
of sequences 	x = {	xn}n∈N, where 	xn = (a11(n), a12(n), a21(n), a22(n)) are four-valued
vectors with the entries of the matrices An as components. If we want in addition to
meet the requirements in (2.2), e.g. that Det(An,n) = 1 ∀n, we can restrict to two entries
(a11(n), a12(n)), but still keep enough randomness.

9
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We equip X with the shift automorphism (σ (	x))n = 	xn+1 and with a σ -invariant measure
μ (defined on the σ algebra of cylinders). Concretely, if f is a measurable function on X ,
then its mean value with respect to μ is given by

μ(f ) =
∫
X

dμ(	x)f (	x) ;

furthermore, μ(f ◦ σ) = μ(f ).
Observe that the quantities e2π i un(I ) in (6) can be regarded as measurable functions on

X ; more precisely, let Pj project out of the sequence 	x the j th component (Pj 	x = 	xj ). Then,
consider the expression of un(I ) given by (6); it turns out that one can write

e2π i un(I ) =
nI∏

a=1

nI∏
b=1

G	ka
	kb

◦ σb−a ◦ Pn(	x), where

G	ka
	kb

◦ σb−a ◦ Pn(	x) = e
2π i
d

σ (	ka,Ab−a+n
	kb). (21)

Namely, the entries of the matrices which fix the algebraic relations (6) are given by a definite
realization of the stochastic process, or by a definite trajectory of the shift-dynamical system
(X , μ, σ ). We shall assume such a dynamical system to be weakly mixing [12] (hence ergodic,
but less than mixing); this means that if f and g are two essentially bounded functions on X
with respect to μ, then

lim
N→+∞

1

N

N−1∑
k=0

|μ(f · (g ◦ σ k)) − μ(f )μ(g)| = 0. (22)

This condition is equivalent to the following one [12]: there exists subset Jfg ⊂ N such that

lim
N→∞

#
(
Jfg ∩

[
0, 1, 2, . . . , N − 1

])
N

= 0,

where # denotes the cardinality, for which

lim
n→+∞,n/∈Jfg

μ(f · (g ◦ σn)) = μ(f )μ(g). (23)

Definition 2 (Typical sequences). A sequence 	x ∈ X will be called typical with respect to the
stochastic process (X , μ, σ ) if it is self-averaging, namely if

lim
N→+∞

1

N

N−1∑
k=0

f ◦ σ k(	x) = μ(f ) (24)

for all μ-essentially bounded functions on X and if (23) holds with respect to 	x, namely if

lim
n/∈Jfg

lim
N→+∞

1

N

N−1∑
k=0

f ◦ σ k(	x)g ◦ σn+k(	x) = μ(f )μ(g) (25)

for all μ-essentially bounded functions f, g on X .

We now show that weak-mixing and typicality suffice to guarantee the uniqueness of the
tracial state as a shift-invariant state. Fix a typical sequence 	x and, using the functions (21),
construct the averaged sum

eλ(	x) := lim sup
N→+∞

1

N

N−1∑
k=0

e−2π iλkvk, (26)

10
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defined by the lim sup of the real and imaginary parts of the partial sums. Because the modulus
of each summand is bounded by 1, such a function exists: actually its modulus appears in
(18). Note that it is not an ergodic average; however, it is such that

eλ ◦ σ �(	x) = lim sup
N→+∞

1

N

N−1∑
k=0

e−2π iλkvk+� = e2π iλ� eλ(	x). (27)

Proposition 1. Let {An}n∈N be a sequence of matrices provided by a typical sequence 	x of a
weak-mixing stochastic process as explained and u(I) = {un(I )}n∈N be the sequences defined
in lemma 2; then, for all I, the spectrum of u(I) is ∅ or {0}.
Proof. Set f (	x) = e∗

λ(	x) and g(	x) = eλ(	x) in (24) and (25); because of (27),

μ(eλ) = lim
N→+∞

1

N

N−1∑
k=0

e−2π iλkeλ(	x) = δ0λ lim
N→+∞

1

N

N−1∑
k=0

vk,

while the autocorrelation functions yield

μ(e∗
λeλ ◦ σn) = lim

N→+∞
1

N

N−1∑
k=0

e∗
λ ◦ σ k(	x)eλ ◦ σn+k(	x) = e−2π iλn|eλ(	x)|2.

Then, (25) can hold only if λ = 0 or eλ(	x) = 0 for λ �= 0. In the latter case, no
λ �= 0 belongs to the spectrum of the sequence u(I); on the other hand, if λ = 0,
then e0(	x) = μ(e0) = limN→+∞ 1

N

∑N−1
k=0 vk exists as a limit and, if e0(	x) �= 0, λ =

0 ∈ Sp(u(I ). �

Corollary 1. Given a sequence of 2×2 matrices {An}n∈N provided by a typical sequence in the
sense of definition 2, then only the tracial state on the twisted Weyl algebra A is α-invariant.

Remarks 3

(1) Given a shift-dynamical system as (X , μ, σ ), in the Koopman–von Neumann approach
the shift dynamics on X is implemented by a unitary operator U on the Koopman Hilbert
space L2(X , μ). Then, the weak-mixing condition (23) is equivalent [12] to the spectrum
of U being absolutely continuous with respect to the Lebesgue measure on [0, 2π), 1
being the only eigenvalue and the functions constant μ-almost everywhere on X the only
eigenfunctions.

(2) Note that the function eλ in (26) is an eigenstate of the Koopman-unitary operator U; the
proof of proposition 1 is thus nothing else but the proof that weak-mixing implies that,
for λ �= 0, eλ vanishes μ-almost everywhere. The condition of typicality selects those
	x ∈ X where this is exactly the case.

(3) The weak-mixing condition appears to be the least degree of randomness that we have
to ask from the underlying dynamical system (X , μ, σ ) in order to conclude as in the
previous corollary. Weak mixing is implied by mixing, that is asymptotic decorrelation
of two-point functions and not only on the complement of a zero-density subset,

lim
n→+∞ μ(f · (g ◦ σn)) = μ(f )μ(g) ∀ f, g ∈ L∞(X , μ),

and implies ergodicty, that is decorrelation of two-point functions on the average,

lim
N→+∞

1

N

N−1∑
k=0

μ(f · (g ◦ σ k)) = μ(f )μ(g) ∀ f, g ∈ L∞(X , μ).

The easiest concrete example of dynamical system that fits into our framework, consider
as the product of four identically distributed independent Bernoulli processes whose
decorrelation properties are much stronger than weak mixing [12].

11
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(4) The arguments developed in this paper can of course be applied to the Price–Powers shift.
This shows that the weak-mixing condition is sufficient, but, at least in the context of
example 1, not necessary. Indeed, also bitstreams not fulfilling condition (23) may have
the tracial state as the only shift-invariant state. More concretely, this occurs if, for any
I, there are infinitely many ni such that WIα

ni (WI ) = −αni (WI )WI [5]. This property
seemingly requires much less than typicality with respect to a weak-mixing stochastic
process.

4. Conclusions

We have constructed discrete Weyl-like algebras and automorphisms on them such that they
permit only one invariant state, namely the tracial state. The main tool used in the construction
is the request that the algebraic relations among shifted Weyl-like operators be sufficiently
irregular, and it has been implemented by means of choices of commutation relations based
on typical realizations of weak-mixing stochastic processes.

Indeed, the failure of the approach reported in section 2.2 to construct invariant states
does not refer to specific properties of the automorphism, rather it shows that what matters
is long-range non-commutativity. If we can represent the operators as in (9) we can embody
this non-commutativity in [[· · · [αn(A), B0], B1], · · · Bn] �= 0 for an appropriate sequence of
Bk, where the Bk is localized at the lattice point k. Therefore, the operator αn(A) is not only
spread as it happens for quasi-free evolution but gets delocalized also in a multiplicative sense.
Nevertheless, it has still finite velocity in the sense that, at every step, an operator in the local
algebra

⊗N
n=0(Md×d)n is mapped into an operator located in the algebra

⊗N+1
n=0 (Md×d)n.

We expect that the occurrence of non-trivial multi-commutators that do not vanish should
be typical of interacting quantum systems. Of course, in general, the dynamics is such that
one deals with continuous automorphism groups and with multi-commutators by far more
complicated. However, the preceding analysis indicates that in the present abstract model
multi-commutators are responsible for the non-existence of invariant states. This gives a hint
that also in more general situations multi-commutators should play an important role in the
search for invariant states.
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Appendix

The Cantor-like argument needed, following equation (17)

Define SN as a function on the integers such that

SN(k) := 1

N

N−1∑
n=0

v∗
nvn+k

as in (17), where |SN(k)| � K by assumption. Now SN(1) need not converge, but one can
extract a subset {N(j, 1), j = 1, 2, 3 . . .} ∈ N such that SN(j,1)(1) converges, as j → ∞.
Then we proceed inductively, define for each k a smaller subset {N(j, k), j = 1, 2, 3 . . .} ⊂
{N(j, k − 1)}, such that SN(j,k)(k) converges as j → ∞, with k fixed.

12
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Now, and here is the Cantor diagonalization trick, one considers the set {Nj := N(j, j)}.
The sequences SN(j,j)(k) converge, as j → ∞, for each k.

Positive-definiteness

Consider a set {zi}, |i| � M , extend the set {vn}, defining vn := 0 for n < 0, and transform∑
i,j

z∗
i si−j zj = lim

N→∞
1

N

∑
i,j

N+1+i∑
m=i

v∗
m−iz

∗
i vm−j zj .

Considering the bounds |vn| < V , |zi | < Z, one gets

∑
i,j

z∗
i si−j zj = lim

N→∞
1

N

⎡⎣∑
m∈Z

(∑
i

vm−izi

)∗ ⎛⎝∑
j

vm−j zj

⎞⎠ + O(M2 · V 2 · Z2)

⎤⎦ .

The error term vanishes in the limit N → ∞ (to be taken over the subset of N where limits of
the SN exist). Then one may consider approaching �2 sequences of zi by finite sequences.
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